Research Catalog
Ginzburg-Landau vortices
- Title
- Ginzburg-Landau vortices / Fabrice Bethuel, Haïm Brezis, Fréderic Hélein.
- Author
- Bethuel, Fabrice, 1963-
- Publication
- Boston : Birkhäuser, [1994], ©1994.
Items in the Library & Off-site
Filter by
1 Item
Status | Format | Access | Call Number | Item Location |
---|---|---|---|---|
Text | Request in advance | QC20.7.S54 B48 1994 | Off-site |
Holdings
Details
- Additional Authors
- Description
- xxvii, 158 pages : illustrations; 24 cm.
- Series Statement
- Progress in nonlinear differential equations and their applications ; v. 13
- Uniform Title
- Progress in nonlinear differential equations and their applications ; v. 13.
- Subject
- Singularities (Mathematics)
- Mathematical physics
- Superconductors > Mathematics
- Superfluidity > Mathematics
- Differential equations, Nonlinear > Numerical solutions
- Singularités (Mathématiques)
- Physique mathématique
- Superfluidité > Mathématiques
- Equations différentielles non linéaires > Solutions numériques
- Bibliography (note)
- Includes bibliographical references (p. [154]-158) and index.
- Contents
- I. Energy estimates for S[superscript 1]-valued maps -- II. A lower bound for the energy of S[superscript 1]-valued maps on perforated domains -- III. Some basic estimates for u[subscript [epsilon]] -- IV. Towards locating the singularities: bad discs and good discs -- V. An upper bound for the energy of u[subscript [epsilon]] away from the singularities -- VI. [actual symbol not reproducible] converges: u[subscript *] is born! -- VII. u[subscript *] coincides with THE canonical harmonic map having singularities (a[subscript j]) -- VIII. The configuration (a[subscript j]) minimizes the renormalized energy W -- IX. Some additional properties of u[subscript [epsilon]] -- X. Non minimizing solutions of the Ginzburg-Landau equation -- XI. Open problems -- Appendix I. Summary of the basic convergence results in the case where deg(g,[actual symbol not reproducible]G) = 0 -- Appendix II. Radial solutions -- Appendix III. Quantization effects for the equation [actual symbol not reproducible].
- Appendix W. The energy of maps on perforated domains revisited.
- ISBN
- 0817637230 (Boston : acid-free)
- 3764337230 (Basel : acid-free)
- LCCN
- 94002026
- OCLC
- ocm29754519
- Owning Institutions
- Columbia University Libraries