Research Catalog
Systems and control
- Title
- Systems and control / Stanislaw H. Żak.
- Author
- Żak, Stanislaw H.
- Publication
- New York : Oxford University Press, 2003.
Items in the Library & Off-site
Filter by
1 Item
Status | Format | Access | Call Number | Item Location |
---|---|---|---|---|
Text | Request in advance | TJ220 .Z35 2003 | Off-site |
Holdings
Details
- Description
- xvi, 704 pages : illustrations; 25 cm
- Summary
- "Ideal for advanced undergraduate and beginning graduate courses in systems and control, this text can also be used for introductory courses in nonlinear systems and modern automatic control. It requires working knowledge of basic differential equations and elements of linear algebra; a review of the necessary mathematical techniques and terminology is provided."--BOOK JACKET.
- Subject
- Linear control systems
- Bibliography (note)
- Includes bibliographical references (p. 679-691) and index.
- Contents
- 1. Dynamical Systems and Modeling -- 1.1. What Is a System? -- 1.2. Open-Loop Versus Closed-Loop -- 1.3. Axiomatic Definition of a Dynamical System -- 1.4. Mathematical Modeling -- 1.5. Review of Work and Energy Concepts -- 1.6. The Lagrange Equations of Motion -- 1.7. Modeling Examples -- 2. Analysis of Modeling Equations -- 2.1. State-Plane Analysis -- 2.2. Numerical Techniques -- 2.3. Principles of Linearization -- 2.4. Linearizing Differential Equations -- 2.5. Describing Function Method -- 3. Linear Systems -- 3.1. Reachability and Controllability -- 3.2. Observability and Constructability -- 3.3. Companion Forms -- 3.4. Linear State-Feedback Control -- 3.5. State Estimators -- 3.6. Combined Controller-Estimator Compensator -- 4. Stability -- 4.1. Informal Introduction to Stability -- 4.2. Basic Definitions of Stability -- 4.3. Stability of Linear Systems -- 4.4. Evaluating Quadratic Indices --
- 4.5. Discrete-Time Lyapunov Equation -- 4.6. Constructing Robust Linear Controllers -- 4.7. Hurwitz and Routh Stability Criteria -- 4.8. Stability of Nonlinear Systems -- 4.9. Lyapunov's Indirect Method -- 4.10. Discontinuous Robust Controllers -- 4.11. Uniform Ultimate Boundedness -- 4.12. Lyapunov-Like Analysis -- 4.13. LaSalle's Invariance Principle -- 5. Optimal Control -- 5.1. Performance Indices -- 5.2. A Glimpse at the Calculus of Variations -- 5.3. Linear Quadratic Regulator -- 5.4. Dynamic Programming -- 5.5. Pontryagin's Minimum Principle -- 6. Sliding Modes -- 6.1. Simple Variable Structure Systems -- 6.2. Sliding Mode Definition -- 6.3. A Simple Sliding Mode Controller -- 6.4. Sliding in Multi-Input Systems -- 6.5. Sliding Mode and System Zeros -- 6.6. Nonideal Sliding Mode -- 6.7. Sliding Surface Design -- 6.8. State Estimation of Uncertain Systems -- 6.9. Sliding Modes in Solving Optimization Problems --
- 7. Vector Field Methods -- 7.1. A Nonlinear Plant Model -- 7.2. Controller Form -- 7.3. Linearizing State-Feedback Control -- 7.4. Observer Form -- 7.5. Asymptotic State Estimator -- 7.6. Combined Controller-Estimator Compensator -- 8. Fuzzy Systems -- 8.1. Motivation and Basic Definitions -- 8.2. Fuzzy Arithmetic and Fuzzy Relations -- 8.3. Standard Additive Model -- 8.4. Fuzzy Logic Control -- 8.5. Stabilization Using Fuzzy Models -- 8.6. Stability of Discrete Fuzzy Models -- 8.7. Fuzzy Estimator -- 8.8. Adaptive Fuzzy Control -- 9. Neural Networks -- 9.1. Threshold logic Unit -- 9.2. Identification Using Adaptive Linear Element -- 9.3. Backpropagation -- 9.4. Neural Fuzzy Identifier -- 9.5. Radial-Basis Function (RBF) Networks -- 9.6. A Self-Organizing Network -- 9.7. Hopfield Neural Network -- 9.8. Hopfield Network Stability Analysis -- 9.9. Brain-State-in-a-Box (BSB) Models -- 10. Genetic and Evolutionary Algorithms --
- 10.1. Genetics as an Inspiration for an Optimization Approach -- 10.2. Implementing a Canonical Genetic Algorithm -- 10.3. Analysis of the Canonical Genetic Algorithm -- 10.4. Simple Evolutionary Algorithm (EA) -- 10.5. Evolutionary Fuzzy Logic Controllers -- 11. Chaotic Systems and Fractals -- 11.1. Chaotic Systems Are Dynamical Systems with Wild Behavior -- 11.2. Chaotic Behavior of the Logistic Equation -- 11.3. Fractals -- 11.4. Lyapunov Exponents -- 11.5. Discretization Chaos -- 11.6. Controlling Chaotic Systems.
- ISBN
- 0195150112 (alk. paper)
- LCCN
- 2002066792
- OCLC
- 49513636
- ocm49513636
- SCSB-4332635
- Owning Institutions
- Columbia University Libraries