Research Catalog

Physical chemistry for the biological sciences

Title
Physical chemistry for the biological sciences / Gordon G. Hammes.
Author
Hammes, Gordon G., 1934-
Publication
Hoboken, N.J. : Wiley-Interscience, [2007], ©2007.

Items in the Library & Off-site

Filter by

1 Item

StatusFormatAccessCall NumberItem Location
TextRequest in advance QD271 .M46 v.50Off-site

Details

Additional Authors
Hammes, Gordon G., 1934-
Description
xii, 363 pages, 12 unnumbered pages of plates : illustrations (some color); 25 cm.
Series Statement
Methods of biochemical analysis ; v. 50
Uniform Title
Methods of biochemical analysis ; v. 50.
Subject
  • Physical biochemistry
  • Thermodynamics
  • Chemical kinetics
  • Biomolecules > Spectra
  • Spectrum analysis
  • Spectrum Analysis
  • Biochemistry
  • Chemistry, Physical
  • Kinetics
  • Fysische chemie
Note
  • "Combines two volumes published earlier, Thermodynamics and kinetics for the biological sciences and Spectroscopy for the biological sciences"--Pref.
Bibliography (note)
  • Includes bibliographical references and index.
Contents
Thermodynamics -- 1. Heat, Work, and Energy -- 1.1. Introduction -- 1.2. Temperature -- 1.3. Heat -- 1.4. Work -- 1.5. Definition of Energy -- 1.6. Enthalpy -- 1.7. Standard States -- 1.8. Calorimetry -- 1.9. Reaction Enthalpies -- 1.10. Temperature Dependence of the Reaction Enthalpy -- 2. Entropy and Free Energy -- 2.1. Introduction -- 2.2. Statement of the Second Law -- 2.3. Calculation of the Entropy -- 2.4. Third Law of Thermodynamics -- 2.5. Molecular Interpretation of Entropy -- 2.6. Free Energy -- 2.7. Chemical Equilibria -- 2.8. Pressure and Temperature Dependence of the Free Energy -- 2.9. Phase Changes -- 2.10. Additions to the Free Energy -- 3. Applications of Thermodynamics to Biological Systems -- 3.1. Biochemical Reactions -- 3.2. Metabolic Cycles -- 3.3. Direct Synthesis of ATP -- 3.4. Establishment of Membrane Ion Gradients by Chemical Reactions -- 3.5. Protein Structure -- 3.6. Protein Folding -- 3.7. Nucleic Acid Structures -- 3.8. DNA Melting -- 3.9. RNA -- Chemical Kinetics -- 4. Principles of Chemical Kinetics -- 4.1. Introduction -- 4.2. Reaction Rates -- 4.3. Determination of Rate Laws -- 4.4. Radioactive Decay -- 4.5. Reaction Mechanisms -- 4.6. Temperature Dependence of Rate Constants -- 4.7. Relationship between Thermodynamics and Kinetics -- 4.8. Reaction Rates Near Equilibrium -- 5. Applications of Kinetics to Biological Systems -- 5.1. Introduction -- 5.2. Enzyme Catalysis: The Michaelis-Menten Mechanism -- 5.3. [alpha]-Chymotrypsin -- 5.4. Protein Tyrosine Phosphatase -- 5.5. Ribozymes -- 5.6. DNA Melting and Renaturation -- Spectroscopy -- 6. Fundamentals of Spectroscopy -- 6.1. Introduction -- 6.2. Quantum Mechanics -- 6.3. Particle in a Box -- 6.4. Properties of Waves -- 7. X-ray Crystallography -- 7.1. Introduction -- 7.2. Scattering of X rays by a Crystal -- 7.3. Structure Determination -- 7.4. Neutron Diffraction -- 7.5. Nucleic Acid Structure -- 7.6. Protein Structure -- 7.7. Enzyme Catalysis -- 8. Electronic Spectra -- 8.1. Introduction -- 8.2. Absorption Spectra -- 8.3. Ultraviolet Spectra of Proteins -- 8.4. Nucleic Acid Spectra -- 8.5. Prosthetic Groups -- 8.6. Difference Spectroscopy -- 8.7. X-ray Absorption Spectroscopy -- 8.8. Fluorescence and Phosphorescence -- 8.9. RecBCD: Helicase Activity Monitored by Fluorescence -- 8.10. Fluorescence Energy Transfer: A Molecular Ruler -- 8.11. Application of Energy Transfer to Biological Systems -- 8.12. Dihydrofolate Reductase -- 9. Circular Dichroism, Optical Rotary Dispersion, and Fluorescence Polarization -- 9.1. Introduction -- 9.2. Optical Rotary Dispersion -- 9.3. Circular Dichroism -- 9.4. Optical Rotary Dispersion and Circular Dichroism of Proteins -- 9.5. Optical Rotation and Circular Dichroism of Nucleic Acids -- 9.6. Small Molecule Binding to DNA -- 9.7. Protein Folding -- 9.8. Interaction of DNA with Zinc Finger Proteins -- 9.9. Fluorescence Polarization -- 9.10. Integration of HIV Genome into Host Genome -- 9.11. [alpha]-ketoglutarate Dehydrogenase -- 10. Vibrations in Macromolecules -- 10.1. Introduction -- 10.2. Infrared Spectroscopy -- 10.3. Raman Spectroscopy -- 10.4. Structure Determination with Vibrational Spectroscopy -- 10.5. Resonance Raman Spectroscopy -- 10.6. Structure of Enzyme-Substrate Complexes -- 11. Principles of Nuclear Magnetic Resonance and Electron Spin Resonance -- 11.1. Introduction -- 11.2. NMR Spectrometers -- 11.3. Chemical Shifts -- 11.4. Spin-Spin Splitting -- 11.5. Relaxation Times -- 11.6. Multidimensional NMR -- 11.7. Magnetic Resonance Imaging -- 11.8. Electron Spin Resonance -- 12. Applications of Magnetic Resonance to Biology -- 12.1. Introduction -- 12.2. Regulation of DNA Transcription -- 12.3. Protein-DNA Interactions -- 12.4. Dynamics of Protein Folding -- 12.5. RNA Folding -- 12.6. Lactose Permease -- 12.7. Conclusion -- Special Topics -- 13. Ligand Binding to Macromolecules -- 13.1. Introduction -- 13.2. Binding of Small Molecules to Multiple Identical Binding Sites -- 13.3. Macroscopic and Microscopic Equilibrium Constants -- 13.4. Statistical Effects in Ligand Binding to Macromolecules -- 13.5. Experimental Determination of Ligand Binding Isotherms -- 13.6. Binding of Cro Repressor Protein to DNA -- 13.7. Cooperativity in Ligand Binding -- 13.8. Models for Cooperativity -- 13.9. Kinetic Studies of Cooperative Binding -- 13.10. Allosterism -- 14. Hydrodynamics of Macromolecules -- 14.1. Introduction -- 14.2. Frictional Coefficient -- 14.3. Diffusion -- 14.4. Centrifugation -- 14.5. Velocity Sedimentation -- 14.6. Equilibrium Centrifugation -- 14.7. Preparative Centrifugation -- 14.8. Density Centrifugation -- 14.9. Viscosity -- 14.10. Electrophoresis -- 14.11. Peptide-Induced Conformational Change of a Major Histocompatibility Complex Protein -- 14.12. Ultracentrifuge Analysis of Protein-DNA Interactions -- 15. Mass Spectrometry -- 15.1. Introduction -- 15.2. Mass Analysis -- 15.3. Tandem Mass Spectrometry (MS/MS) -- 15.4. Ion Detectors -- 15.5. Ionization of the Sample -- 15.6. Sample Preparation/Analysis -- 15.7. Proteins and Peptides -- 15.8. Protein Folding -- 15.9. Other Biomolecules -- Appendix 1. Useful Constants and Conversion Factors -- Appendix 2. Structures of the Common Amino Acids at Neutral pH -- Appendix 3. Common Nucleic Acid Components -- Appendix 4. Standard Free Energies and Enthalpies of Formation at 298 K, 1 atm, pH 7, and 0.25 M Ionic Strength -- Appendix 5. Standard Free Energy and Enthalpy Changes for Biochemical Reactions at 298 K, 1 atm, pH 7.0, pMg 3.0, and 0.25 M Ionic Strength.
ISBN
  • 9780470122020
  • 0470122021
LCCN
2006052998
OCLC
  • ocm76871596
  • 76871596
  • SCSB-5326796
Owning Institutions
Columbia University Libraries