Research Catalog
- Title
- Applied regression : an introduction / Michael S. Lewis-Beck.
- Author
- Lewis-Beck, Michael S.
- Publication
- Beverly Hills, Calif. : Sage Publications, c1980.
Items in the Library & Off-site
Filter by
2 Items
Status | Format | Access | Call Number | Item Location |
---|---|---|---|---|
Text | Request in advance | HA31.3 .L48 | Off-site | |
Text | Request in advance | STAT. L 589 a | Off-site |
Holdings
Details
- Description
- 79 p. : ill.; 22 cm.
- Summary
- This text allows social scientists who are not specialists in quantitative techniques to arrive at clear verbal explanations of their numerical results. It discusses specialized subjects such as analysis of residuals, interaction effects, dummy variables, specification error, multicollinearity, and standardized coefficients.
- Series Statement
- Sage university papers series. Quantitative applications in the social sciences ; no. 07-022
- Uniform Title
- Quantitative applications in the social sciences no. 07-022.
- Subject
- Genre/Form
- Einführung.
- Bibliography (note)
- Bibliography: p. 77.
- Processing Action (note)
- committed to retain
- Contents
- 1. Bivariate regression: fitting a straight line -- Exact versus inexact relationships -- The least squares principle -- The data -- The scatterplot -- The slope -- The intercept -- Prediction -- Assessing explanatory power: The R² -- R² versus r -- 2. Bivariate regression: Assumptions and inferences -- The regression assumptions -- Confidence intervals and significance tests -- The one-tailed test -- Significance testing: a rule of thumb -- Reasons why a parameter estimate may not be significant -- The prediction error for Y -- Analysis of residuals -- The effect of safety enforcement on coal mining fatalities: a bivariate regression example -- 3. Multiple regression -- The general equation -- Interpreting the parameter estimates -- Confidence intervals and significance tests -- The R² -- Predicting Y -- The possibility of interaction effects -- A four-variable model: overcoming specification error -- The multicollinearity problem -- High multicollinearity: an example -- The relative importance of the independent variables -- Extending the regression model: dummy variables -- Determinants of coal mining fatalities: a multiple regression example -- What next?
- ISBN
- 0803914946 (pbk.)
- LCCN
- ^^^80005821^
- OCLC
- 6699609
- Owning Institutions
- Harvard Library