Research Catalog
Elements of queueing theory : Palm Martingale calculus and stochastic recurrences / François Baccelli, Pierre Brémaud.
- Title
- Elements of queueing theory : Palm Martingale calculus and stochastic recurrences / François Baccelli, Pierre Brémaud.
- Author
- Baccelli, F. (François), 1954-
- Publication
- Berlin ; New York : Springer, c2003.
Items in the Library & Off-site
Filter by
1 Item
Status | Format | Access | Call Number | Item Location |
---|---|---|---|---|
Text | Use in library | QA1 .A6 vol. 26 2003 | Off-site |
Holdings
Details
- Additional Authors
- Brémaud, Pierre.
- Description
- xiv, 334 p. : ill.; 24 cm.
- Series Statement
- Applications of mathematics, 0172-4568 ; 26
- Uniform Title
- Applications of mathematics ; 26.
- Alternative Title
- Palm-martingale calculus and stochastic recurrences
- Subject
- Bibliography (note)
- Includes bibliographical references (p. [317]-327) and index.
- Processing Action (note)
- committed to retain
- Contents
- 1. The Palm calculus of point processes -- 1.1 Stationary marked point process -- 1.2 Palm probability -- 1.3 Basic formulas of Palm calculus -- 1.4 Examples -- 1.5 Local aspect of Palm probability -- 1.6 Ergodicity of a point process -- 1.7 Palm theory in discrete time -- 1.8 Stochastic intensity -- 1.9 Palm probability and stochastic intensity -- 1.10 Solutions to exercises -- 1.11 Bibliographical comments -- 2. Stationarity and coupling -- 2.1 Stability of the single server queue -- 2.2 Proof of Loynes' theorem -- 2.3 The multiserver queue -- 2.4 Coupling -- 2.5 Stochastic recurrences and their stationary regimes -- 2.6 Stability of the G/G/1/0 queue -- 2.7 The fluid queue -- 2.8 Other queueing systems -- 2.9 Stability of queueing networks via coupling -- 2.10 Queueing network stability via recurrence equations -- 2.11 Non-expansive stochastic recurrences -- 2.12 Solutions to exercises -- 2.13 Bibliographical comments -- 3. Formulas -- 3.1 The Little formula -- 3.2 Other applications of Campbell's formula -- 3.3 Event and time averages -- 3.4 Formulas derived from conservation equations -- 3.5 Applications of the stochastic intensity integration formula -- 3.6 Solutions to exercises -- 3.7 Bibliographical comments -- 4. Stochastic ordering of queues -- 4.1 Comparison of service disciplines -- 4.2 Comparison of queues -- 4.3 Association properties of queues -- 4.4 Stochastic comparison of time-stationary queues -- 4.5 Solutions to exercises -- 4.6 Bibliographical comments.
- ISBN
- 3540660887 (acid-free paper)
- LCCN
- ^^2002191197
- Owning Institutions
- Harvard Library