Research Catalog

Chaos : from simple models to complex systems / Massimo Cencini, Fabio Cecconi, Angelo Vulpiani.

Title
Chaos : from simple models to complex systems / Massimo Cencini, Fabio Cecconi, Angelo Vulpiani.
Author
Cencini, Massimo
Publication
Hackensack, NJ : World Scientific, c2010.

Items in the Library & Off-site

Filter by

1 Item

StatusFormatAccessCall NumberItem Location
TextRequest in advance Q172.5.C45 C43 2010Off-site

Holdings

Details

Additional Authors
  • Cecconi, Fabio.
  • Vulpiani, A.
Description
xx, 460 p. : ill.; 26 cm.
Series Statement
Series on advances in statistical mechanics ; v. 17
Uniform Title
Series on advances in statistical mechanics ; v. 17.
Subject
  • Chaotic behavior in systems
  • Dynamics
Bibliography (note)
  • Includes bibliographical references (p. 427-454) and index.
Processing Action (note)
  • committed to retain
Contents
Introduction to dynamical systems and chaos. 1. First encounter with chaos. 1.1. Prologue. 1.2. The nonlinear pendulum. 1.3. The damped nonlinear pendulum. 1.4. The vertically driven and damped nonlinear pendulum. 1.5. What about the predictability of pendulum evolution? 1. 6. Epilogue. 2. The language of dynamical systems. 2.1. Ordinary Differential Equations (ODE). 2.2. Discrete time dynamical systems : maps. 2.3. The role of dimension. 2.4. Stability theory. 2.5. Exercises. 3. Examples of chaotic behaviors. 3.1. The logistic map. 3.2. The Lorenz model. 3.3. The Henon-Heiles system. 3.4. What did we learn and what will we learn? 3.5. Closing remark. 3.6. Exercises. 4. Probabilistic approach to chaos. 4.1. An informal probabilistic approach. 4.2. Time evolution of the probability density. 4.3. Ergodicity. 4.4. Mixing. 4.5. Markov chains and chaotic maps. 4.6. Natural measure. 4.7. Exercises. 5. Characterization of chaotic dynamical systems. 5.1. Strange attractors. 5.2.^ Fractals and multifractals. 5.3. Characteristic Lyapunov exponents. 5.4. Exercises. 6. From order to chaos in dissipative systems. 6.1. The scenarios for the transition to turbulence. 6.2. The period doubling transition. 6.3. Transition to chaos through intermittency : Pomeau-Manneville scenario. 6.4. A mathematical remark. 6.5. Transition to turbulence in real systems. 6.6. Exercises. 7. Chaos in Hamiltonian systems. 7.1. The integrability problem. 7.2. Kolmogorov-Arnold-Moser theorem and the survival of tori. 7.3. Poincare-Birkhoff theorem and the fate of resonant tori. 7.4. Chaos around separatrices. 7.5. Melnikov's theory. 7.6. Exercises --^ Advanced topics and applications : from information theory to turbulence. 8. Chaos and information theory. 8.1. Chaos, randomness and information. 8.2. Information theory, coding and compression. 8.3. Algorithmic complexity. 8.4. Entropy and complexity in chaotic systems. 8.5. Concluding remarks. 8.6. Exercises. 9. Coarse-grained information and large scale predictability. 9.1. Finite-resolution versus infinite-resolution descriptions. 9.2. [symbol]-entropy in information theory : lossless versus lossy coding. 9.3. [symbol]-entropy in dynamical systems and stochastic processes. 9.4. The finite size lyapunov exponent (FSLE). 9.5. Exercises. 10. Chaos in numerical and laboratory experiments. 10.1. Chaos in silico. 10.2. Chaos detection in experiments. 10.3. Can chaos be distinguished from noise? 10.4. Prediction and modeling from data. 11. Chaos in low dimensional systems. 11.1. Celestial mechanics. 11.2. Chaos and transport phenomena in fluids. 11.3.^ Chaos in population biology and chemistry. 11.4. Synchronization of chaotic systems. 12. Spatiotemporal chaos. 12.1. Systems and models for spatiotemporal chaos. 12.2. The thermodynamic limit. 12.3. Growth and propagation of space-time perturbations. 12.4. Non-equilibrium phenomena and spatiotemporal chaos. 12.5. Coarse-grained description of high dimensional chaos. 13. Turbulence as a dynamical system problem. 13.1. Fluids as dynamical systems. 13.2. Statistical mechanics of ideal fluids and turbulence phenomenology. 13.3. From partial differential equations to ordinary differential equations. 13.4. Predictability in turbulent systems. 14. Chaos and statistical mechanics : Fermi-Pasta-Ulam a case study. 14.1. An influential unpublished paper. 14.2. A random walk on the role of ergodicity and chaos for equilibrium statistical mechanics. 14.3. Final remarks.
ISBN
  • 9789814277655
  • 9814277657
OCLC
317922141
Owning Institutions
Harvard Library