Research Catalog
Arithmetic duality theorems
- Title
- Arithmetic duality theorems / J.S. Milne.
- Author
- Milne, J. S., 1942-
- Publication
- Boston : Academic Press, ©1986.
Items in the Library & Off-site
Filter by
1 Item
Status | Format | Access | Call Number | Item Location |
---|---|---|---|---|
Text | Use in library | QA247 .M554 1986 | Off-site |
Details
- Description
- x, 419 pages; 24 cm.
- Series Statement
- Perspectives in mathematics ; vol. 1
- Uniform Title
- Perspectives in mathematics ; vol. 1.
- Subject
- Note
- Includes index.
- Bibliography (note)
- Bibliography: p. [410]-419.
- Contents
- Galois Cohomology -- Duality relative to a class formation -- Local fields -- Abelian varieties over local fields -- Global fields -- Global Euler-Poincare characteristics -- Abelian varieties over global fields -- An application to the conjecture of Birch and Swinnerton-Dyer -- Abelian class field theory, in the sense of Langlands -- Other applications -- Class field theory for function fields -- Etale Cohomology -- Local results -- Global results: preliminary calculations -- Global results: the main theorem -- Global results: complements -- Global results: abelian schemes -- Global results: singular schemes -- Global results: higher dimensions -- Flat Cohomology -- Local results: mixed characteristic, finite group schemes -- Local results: mixed characteristic, abelian varieties -- Global results: number field case -- Local results: mixed characteristic, perfect residue field -- Two exact sequences -- Local fields of characteristic p -- Local results: equicharacteristic -- Global results: curves over finite fields, finite sheaves -- Global results: curves over finite fields, Neron models -- Local results: equicharacteristic, perfect residue field -- Global results: curves over perfect fields -- Embedding finite group schemes -- Extending finite group schemes -- Biextensions and Neron models.
- ISBN
- 0124980406
- 9780124980402
- LCCN
- 86026451
- OCLC
- ocm14356210
- 14356210
- SCSB-1155315
- Owning Institutions
- Princeton University Library