Research Catalog
Thermal design : heat sinks, thermoelectrics, heat pipes, compact heat exchangers, ands solar cells
- Title
- Thermal design : heat sinks, thermoelectrics, heat pipes, compact heat exchangers, ands solar cells / Ho Sung Lee.
- Author
- Lee, HoSung.
- Publication
- Hoboken, NJ : Wiley, ©2010.
Items in the Library & Off-site
Filter by
1 Item
Status | Format | Access | Call Number | Item Location |
---|---|---|---|---|
Text | Use in library | TJ255.5 .L44 2010 | Off-site |
Details
- Description
- xviii, 630 pages : illustrations; 25 cm
- Summary
- "The proposed is written as a senior undergraduate or the first-year graduate textbook,covering modern thermal devices such as heat sinks, thermoelectric generators and coolers, heat pipes, and heat exchangers as design components in larger systems. These devices are becoming increasingly important and fundamental in thermal design across such diverse areas as microelectronic cooling, green or thermal energy conversion, and thermal control and management in space, etc. However, there is no textbook available covering this range of topics. The proposed book may be used as a capstone design course after the fundamental courses such as thermodynamics, fluid mechanics, and heat transfer. The underlying concepts in this book cover the, 1) understanding of the physical mechanisms of the thermal devices with the essential formulas and detailed derivations, and 2) designing the thermal devices in conjunction with mathematical modeling, graphical optimization, and occasionally computational-fluid-dynamic (CFD) simulation. Important design examples are developed using the commercial software, MathCAD, which allows the students to easily reach the graphical solutions even with highly detailed processes. In other words, the design concept is embodied through the example problems. The graphical presentation generally provides designers or students with the rich and flexible solutions toward achieving the optimal design. A solutions manual will be provided"--Provided by publisher.
- "The proposed is written as a senior undergraduate or the first-year graduate textbook,covering modern thermal devices such as heat sinks, thermoelectric generators and coolers, heat pipes, and heat exchangers as design components in larger systems. These devices are becoming increasingly important and fundamental in thermal design across such diverse areas as microelectronic cooling, green or thermal energy conversion, and thermal control and management in space, etc. However, there is no textbook available covering this range of topics"--Provided by publisher.
- Subject
- Heat engineering > Materials
- Heat-transfer media
- Thermodynamics
- Thermoelectric apparatus and appliances
- Thermoelectric apparatus and appliances > Design and construction
- Heat sinks (Electronics)
- Heat pipes
- Heat exchangers
- Thermodynamics
- thermodynamics
- heat exchangers
- Thermoelectric apparatus and appliances > Design and construction
- Heat pipes
- Heat exchangers
- Heat-transfer media
- Thermoelectric apparatus and appliances
- Värmeteknik
- Termodynamik
- Heat engineering
- Note
- Includes index.
- Bibliography (note)
- Includes bibliographical references and index.
- Contents
- Machine generated contents note: 1. Introduction -- 1.1. Introduction -- 1.2. Humans and Energy -- 1.3. Thermodynamics -- 1.3.1. Energy, Heat, and Work -- 1.3.2. First Law of Thermodynamics -- 1.3.3. Heat Engines, Refrigerators, and Heat Pumps -- 1.3.4. Second Law of Thermodynamics -- 1.3.5. Carnot Cycle -- 1.4. Heat Transfer -- 1.4.1. Introduction -- 1.4.2. Conduction -- 1.4.3. Convection -- 1.4.3.1. Parallel Flow on an Isothermal Plate -- 1.4.3.2. Cylinder in Cross Flow -- 1.4.3.3. Flow in Ducts -- 1.4.3.4. Free Convection -- 1.4.4. Radiation -- 1.4.4.1. Thermal Radiation -- 1.4.4.2. View Factor -- 1.4.4.3. Radiation Exchange between Diffuse-Gray Surfaces -- References -- 2. Heat Sinks -- 2.1. Longitudinal Fin of Rectangular Profile -- 2.2. Heat Transfer from Fin -- 2.3. Fin Effectiveness -- 2.4. Fin Efficiency -- 2.5.
- Note continued: 3.5. Similar and Dissimilar Materials -- 3.5.1. Similar Materials -- 3.5.2. Dissimilar Materials -- 3.6. Thermoelectric Generator (TEG) -- 3.6.1. Similar and Dissimilar Materials -- 3.6.1.1. Similar Materials -- 3.6.1.2. Dissimilar Materials -- 3.6.2. Conversion Efficiency and Current -- 3.6.3. Maximum Conversion Efficiency -- 3.6.4. Maximum Power Efficiency -- 3.6.5. Maximum Performance Parameters -- 3.6.6. Multicouple Modules -- 3.7. Thermoelectric Coolers (TEC) -- 3.7.1. Similar and Dissimilar Materials -- 3.7.1.1. Similar Materials -- 3.7.1.2. Dissimilar Materials -- 3.7.2. Coefficient of Performance -- 3.7.3. Optimum Current for the Maximum Cooling Rate -- 3.7.4. Maximum Performance Parameters -- 3.7.5. Optimum Current for the Maximum COP -- 3.7.6. Generalized Charts -- 3.7.7. Optimum Geometry for the Maximum Cooling in Similar Materials -- ^ 3.7.8. Thermoelectric Modules -- 3.7.9. Commercial TEC -- 3.7.10. Multistage Modules -- 3.7.10.1. Commercial Multistage Peltier Modules -- 3.7.11. Design Options -- 3.8. Applications -- 3.8.1. Thermoelectric Generators -- 3.8.2. Thermoelectric Coolers -- 3.9. Design Example -- 3.9.1. Design Concept -- 3.9.2. Design of Internal and External Heat Sinks -- 3.9.3. Design of Thermoelectric Cooler (TEC) -- 3.9.4. Finding the Exact Solution for Tc and Th -- 3.9.5. Performance Curves for Thermoelectric Air Cooler -- 3.10. Thermoelectric Module Design -- 3.10.1. Thermal and Electrical Contact Resistances for TEG -- 3.10.2. Thermal and Electrical Contact Resistances for TEC -- 3.11. Design Example of TEC Module -- 3.11.1. Design Concept -- 3.11.2. Summary of Design of a TEC Module -- References -- Problems -- 4. Heat Pipes -- 4.1. Operation of Heat Pipe -- 4.2. Surface Tension -- 4.3. Heat Transfer Limitations -- 4.3.1. Capillary Limitation
- Note continued: 4.3.1.1. Maximum Capillary Pressure Difference -- 4.3.1.2. Vapor Pressure Drop -- 4.3.1.3. Liquid Pressure Drop -- 4.3.1.4. Normal Hydrostatic Pressure Drop -- 4.3.1.5. Axial Hydrostatic Pressure Drop -- 4.3.2. Approximation for Capillary Pressure Difference -- 4.3.3. Sonic Limitation -- 4.3.4. Entrainment Limitation -- 4.3.5. Boiling Limitation -- 4.3.6. Viscous Limitation -- 4.4. Heat Pipe Thermal Resistance -- 4.4.1. Contact Resistance -- 4.5. Variable Conductance Heat Pipes (VCHP) -- 4.5.1. Gas-Loaded Heat Pipes -- 4.5.2. Clayepyron-Clausius Equation -- 4.5.3. Applications -- 4.6. Loop Heat Pipes -- 4.7. Micro Heat Pipes -- 4.7.1. Steady-State Models -- 4.7.1.1. Conventional Model -- 4.7.1.2. Cotter's Model -- 4.8. Working Fluid -- 4.8.1. Figure of Merit -- 4.8.2. Compatibility -- 4.9. Wick Structures -- 4.10. Design Example -- 4.10.1. Selection of Material and Working Fluid -- 4.10.2. Working Fluid Properties -- 4.10.3. Estimation of Vapor Space Radius -- 4.10.4. Estimation of Operating Limits -- 4.10.4.1. Capillary Limits -- 4.10.4.2. Sonic Limits -- 4.10.4.3. Entrainment Limits -- 4.10.4.4. Boiling Limits -- 4.10.5. Wall Thickness -- 4.10.6. Wick Selection -- 4.10.7. Maximum Arterial Depth -- 4.10.8. Design of Arterial Wick -- 4.10.9. Capillary Limitation -- 4.10.9.1. Liquid Pressure Drop in the Arterics -- 4.10.9.2. Liquid Pressure Drop in the Circumferential Wick -- 4.10.9.3. Vapor Pressure Drop in the Vapor Space -- 4.10.10. Performance Map -- 4.10.11. Check the Temperature Drop -- References -- Problems -- 5. Compact Heat Exchangers -- 5.1. Introduction -- 5.2. Fundamentals of Heat Exchangers -- 5.2.1. Counterflow and Parallel Flows -- 5.2.2. Overall Heat Transfer Coefficient -- 5.2.3. Log Mean Temperature Difference (LMTD) -- 5.2.4. Flow Properties
- Note continued: 5.2.5. Nusselt Numbers -- 5.2.6. Effectiveness -- NTU (-NTU) Method -- 5.2.6.1. Parallel Flow -- 5.2.6.2. Counterflow -- 5.2.6.3. Crossflow -- 5.2.7. Heat Exchanger Pressure Drop -- 5.2.8. Fouling Resistances (Fouling Factors) -- 5.2.9. Overall Surface (Fin) Efficiency -- 5.2.10. Reasonable Velocities of Various Fluids in Pipe Flow -- 5.3. Double-Pipe Heat Exchangers -- 5.4. Shell-and-Tube Heat Exchangers -- 5.4.1. Baffles -- 5.4.2. Multiple Passes -- 5.4.3. Dimensions of Shell-and-Tube Heat Exchanger -- 5.4.4. Shell-side Tube Layout -- 5.5. Plate Heat Exchangers (PHE) -- 5.5.1. Flow Pass Arrangements -- 5.5.2. Geometric Properties -- 5.5.3. Friction Factor -- 5.5.4. Nusselt Number -- 5.5.5. Pressure Drops -- 5.6. Pressure Drops in Compact Heat Exchangers -- 5.6.1. Fundamentals of Core Pressure Drop -- 5.6.2. Core Entrance and Exit Pressure Drops -- 5.6.3. Contraction and Expansion Loss Coefficients -- 5.6.3.1. Circular-Tube Core -- 5.6.3.2. Square-Tube Core -- 5.6.3.3. Flat-Tube Core -- 5.6.3.4. Triangular-Tube Core -- 5.7. Finned-Tube Heat Exchangers -- 5.7.1. Geometrical Characteristics -- 5.7.2. Flow Properties -- 5.7.3. Thermal Properties -- 5.7.4. Correlations for Circular Finned-Tube Geometry -- 5.7.5. Pressure Drop -- 5.7.6. Correlations for Louvered Plate-Fin Flat-Tube Geometry -- 5.8. Plate-Fin Heat Exchangers -- 5.8.1. Geometric Characteristics -- 5.8.2. Correlations for Offset Strip Fin (OSF) Geometry -- 5.9. Louver-Fin-Type Flat-Tube Plate-Fin Heat Exchangers -- 5.9.1. Geometric Characteristics -- 5.9.2. Correlations for Louver Fin Geometry -- References -- Problems -- 6. Solar Cells -- 6.1. Introduction -- 6.1.1. Operation of Solar Cells -- 6.1.2. Solar Cells and Technology -- 6.1.3. Solar Irradiance -- 6.1.4. Air Mass -- 6.1.5. Nature of Light
- Note continued: 6.2. Quantum Mechanics -- 6.2.1. Atomic Structure -- 6.2.2. Bohr's Model -- 6.2.3. Line Spectra -- 6.2.4. De Broglie Wave -- 6.2.5. Heisenberg Uncertainty Principle -- 6.2.6. Schrodinger Equation -- 6.2.7. Particle in a 1-D Box -- 6.2.8. Quantum Numbers -- 6.2.9. Electron Configurations -- 6.2.10. Van der Waals Forces -- 6.2.11. Covalent Bonding -- 6.2.12. Energy Band -- 6.2.13. Pseudo-Potential Well -- 6.3. Density of States -- 6.3.1. Number of States -- 6.3.2. Effective Mass -- 6.4. Equilibrium Intrinsic Carrier Concentration -- 6.4.1. Fermi Function -- 6.4.2. Nondegenerate Semiconductor -- 6.4.3. Equilibrium Electron and Hole Concentrations -- 6.4.4. Intrinsic Semiconductors -- 6.4.5. Intrinsic Carrier Concentration, ni -- 6.4.6. Intrinsic Fermi Energy -- 6.4.7. Alternative Expression for n0 and p0 -- 6.5. Extrinsic Semiconductors in Thermal Equilibrium -- 6.5.1. Doping, Donors, and Acceptors -- 6.5.2. Extrinsic Carrier Concentration in Equilibrium -- 6.5.3. Built-in Voltage -- 6.5.4. Principle of Detailed Balance -- 6.5.5. Majority and Minority Carriers in Equilibrium -- 6.6. Generation and Recombination -- 6.6.1. Direct and Indirect Band Gap Semiconductors -- 6.6.2. Absorption Coefficient -- 6.6.3. Photogeneration -- 6.7. Recombination -- 6.7.1. Recombination Mechanisms -- 6.7.2. Band Energy Diagram under Nonequilibrium Conditions -- 6.7.2.1. Back Surface Field (BSF) -- 6.7.3. Low-Level Injection -- 6.7.3.1. Low-Level Injection -- 6.7.4. Band-to-Band Recombination -- 6.7.5. Trap-Assisted (SRH) Recombination -- 6.7.6. Simplified Expression of the SRH Recombination Rate -- 6.7.7. Auger Recombination -- 6.7.8. Total Recombination Rate -- 6.8. Carrier Transport -- 6.8.1. Drift -- 6.8.2. Carrier Mobility -- 6.8.3. Diffusion -- 6.8.4. Total Current Densities
- Note continued: 6.8.5. Einstein Relationship -- 6.8.6. Semiconductor Equations -- 6.8.7. Minority-Carrier Diffusion Equations -- 6.8.8. P -- n Junction -- 6.8.9. Calculation of Depletion Width -- 6.8.10. Energy Band Diagram with a Reference Point -- 6.8.11. Quasi-Fermi Energy Levels -- 6.9. Minority Carrier Transport -- 6.9.1. Boundary Conditions -- 6.9.2. Minority Carrier Lifetimes -- 6.9.3. Minority Carrier Diffusion Lengths -- 6.9.4. Minority Carrier Diffusion Equation for Holes -- 6.9.5. Minority Carrier Diffusion Equation for Electrons -- 6.10. Characteristics of Solar Cells -- 6.10.1. Current Density -- 6.10.2. Current-Voltage Characteristics -- 6.10.3. Figures of Merit -- 6.10.4. Effect of Minority Electron Lifetime on Efficiency -- 6.10.5. Effect of Minority Hole Lifetime on Efficiency -- 6.10.6. Effect of Back Surface Recombination Velocity on Efficiency -- 6.10.7. Effect of Base Width on Efficiency -- 6.10.8. Effect of Emitter Width WN on Efficiency -- 6.10.9. Effect of Acceptor Concentration on Efficiency -- 6.10.10. Effect of Donor Concentration on Efficiency -- 6.10.11. Band Gap Energy with Temperature -- 6.10.12. Effect of Temperature on Efficiency -- 6.11. Additional Topics -- 6.11.1. Parasitic Resistance Effects (Ohmic Losses) -- 6.11.2. Quantum Efficiency -- 6.11.3. Ideal Solar Cell Efficiency -- 6.12. Modeling -- 6.12.1. Modeling for a Silicon Solar Cell -- 6.12.2. Comparison of the Solar Cell Model with a Commercial Product -- 6.13. Design of a Solar Cell -- 6.13.1. Solar Cell Geometry with Surface Recombination Velocities -- 6.13.2. Donor and Acceptor Concentrations -- 6.13.3. Minority Carrier Diffusion Lifetimes -- 6.13.4. Grid Spacing -- 6.13.5. Anti-Reflection, Light Trapping and Passivation -- References -- Problems -- Appendix A^ Thermophysical Properties -- Appendix B Thermoelectrics
- Note continued: B.1. Thermoelectric Effects -- Seebeck Effect -- Peltier Effect -- Thomson Effect -- B.2. Thomson (or Kelvin) Relationships -- B.3. Heat Balance Equation -- B.4. Figure of Merit and Optimum Geometry -- References -- Appendix C Pipe Dimensions -- Appendix D Curve Fitting of Working Fluids -- Curve Fit for Working Fluids Chosen -- D.1. Curve Fitting for Working Fluid Properties Chosen -- D.1.1. MathCad Format -- Appendix E Tutorial I for 2-D -- Problem Description for Tutorial I -- E.1. Tutorial I: Using Gambit and Fluent for Thermal Behavior of an Electrical Wire -- E.1.1. Creating Geometry in Gambit -- E.2. Calculations for Heat Generation -- Appendix F Tutorial II for 3-D -- Problem Description for Tutorial II -- F.1. Tutorial II Double-Pipe Heat Exchanger: Using SolidWorks, Gambit, and Fluent -- F.1.1. Double-Pipe Heat Exchanger -- F.1.2. Construct Model in SolidWorks -- F.1.3. Meshing the Double Pipe Heat Exchanger in Gambit -- F.1.4. Analysis of Heat Exchanger in Fluent -- Appendix G Computational Work of Heat Pipe -- G.1. Heat Pipe and Heat Sink -- Appendix H Computational Work of a Heat Sink -- H.1. Electronic Package Cooling -- Appendix I Tutorial for MathCAD -- I.1. Tutorial Problem for MathCAD.
- ISBN
- 9780470496626
- 0470496622
- 9780470949979
- 047094997X
- 9780470951606
- 0470951605
- 9780470951774
- 047095177X
- 9781118004685
- 111800468X
- 9781118004715
- 111800471X
- LCCN
- 2010018381
- OCLC
- ocn610832753
- 610832753
- SCSB-9278080
- Owning Institutions
- Princeton University Library