Research Catalog
Satellite-to-ground radiowave propagation
- Title
- Satellite-to-ground radiowave propagation / J.E. Allnutt.
- Author
- Allnutt, J. E. (Jeremy E.)
- Publication
- London : Institution of Engineering and Technology, 2011.
Items in the Library & Off-site
Filter by
1 Item
Status | Format | Access | Call Number | Item Location |
---|---|---|---|---|
Text | Use in library | TK6553 .A56 2011 | Off-site |
Details
- Description
- xvi, 680 pages : illustrations, maps; 25 cm
- Summary
- The book is divided into eight chapters: radiowave Earth-space communications; ionospheric effects; clear-air effects; attenuation effects; depolarization effects; mobile satellite service propagation effects; optical communications propagation effects; and restoration of performance during signal impairments.
- Series Statement
- IET electromagnetic waves series ; 54
- Uniform Title
- IET electromagnetic waves series ; 54.
- Subject
- Note
- Previous ed.: 1989.
- Bibliography (note)
- Includes bibliographical references and index.
- Contents
- Machine generated contents note: 1. Radiowave Earth-space communications -- 1.1. Introduction -- 1.2. Artificial earth satellites -- 1.2.1. Choice of orbit -- 1.2.1.1. Equatorial orbits -- 1.2.1.2. Inclined orbits -- 1.2.2. Choice of antenna -- 1.2.3. Choice of frequency -- 1.2.4. Choice of polarization -- 1.2.5. Choice of tracking -- 1.2.6. Choice of service -- 1.3. atmosphere -- 1.3.1. Atmospheric divisions -- 1.3.2. Weather patterns -- 1.3.2.1. Horizontal flow -- 1.3.2.2. Vertical flow -- 1.3.3. Rainfall characteristics -- 1.3.3.1. Individual rain cell characteristics -- 1.3.3.2. General areal rainfall characteristics -- 1.3.4. Precipitation types -- 1.3.5. Raindrop characteristics and distributions -- 1.3.5.1. Terminal velocity -- 1.3.5.2. Drop shapes -- 1.3.5.3. Drop size distributions -- 1.3.5.4. Rainfall rate distributions -- 1.3.6. Atmospheric tides -- 1.4. System planning -- 1.4.1. Earth station coordination -- 1.4.2. Site shielding 62 1.4.2.1 Knife-edge diffraction -- 1.4.3. Link budget -- References -- 2. Ionospheric effects -- 2.1. Introduction -- 2.2. Some basic formulations 86 2.2.1 Critical frequency -- 2.2.2. Total electron content -- 2.2.3. Faraday rotation -- 2.2.4. Group delay -- 2.2.5. Phase advance -- 2.2.6. Doppler frequency -- 2.2.7. Dispersion -- 2.3. Ionospheric scintillation -- 2.3.1. Fresnel zone -- 2.3.2. Observations of gigahertz ionospheric scintillations -- 2.3.3. Scintillation indices -- 2.3.3.1. 10.7-cm flux data -- 2.3.4. Power spectra -- 2.4. Ionospheric scintillation characteristics -- 2.5. Theory and predictive modelling of gigahertz ionospheric scintillations -- 2.5.1. Summary of background information and early predictive modelling -- 2.5.2. Current modelling procedures -- 2.6. System impact -- 2.6.1. Amplitude effects -- 2.6.1.1. Decrease in power -- 2.6.1.2. Increase in power -- 2.6.1.3. Differential amplitude -- 2.6.2. Phase effects -- 2.6.2.1. Maritime mobile links -- 2.6.2.2. Fixed satellite systems -- 2.6.2.3. Synthetic aperture radars -- 2.6.3. System effects -- References -- 3. Clear-air effects -- 3.1. Introduction -- 3.2. Refractive effects -- 3.2.1. Refractive index -- 3.2.2. Variations of refractivity with height -- 3.2.3. Ray bending -- 3.2.4. Defocusing -- 3.2.5. Angle of arrival and multipath effects -- 3.2.6. Antenna gain reduction -- 3.2.7. Phase advance -- 3.3. Reflective effects -- 3.3.1. Reflection from a smooth surface -- 3.3.2. Reflection from rough surfaces -- 3.4. Absorptive effects -- 3.4.1. Oxygen and water vapour resonance lines -- 3.4.2. Gaseous absorption -- 3.4.3. Attenuation in fog -- 3.4.4. Attenuation in clouds -- 3.4.5. Total columnar content -- 3.5. Tropospheric scintillation effects -- 3.5.1. Drift measurements -- 3.5.2. High latitude measurements -- 3.5.3. Spectral analyses -- 3.5.4. Separation of `wet' and `dry' tropospheric scintillations -- 3.5.5. Maritime mobile communications -- 3.5.6. Tropospheric scintillation characteristics -- 3.6. Theory and predictive modelling of clear-air effects -- 3.6.1. Summary of early theories on tropospheric scintillation -- 3.6.2. Prediction procedure for determining the effective amplitude loss due to tropospheric scintillations -- 3.6.3. Low angle fading -- 3.6.4. Prediction models for low angle fading -- 3.7. System impact -- 3.7.1. Phase effects -- 3.7.2. Amplitude effects -- 3.7.2.1. Bulk effects -- 3.7.2.2. Short-term, or turbulent, effects -- 3.7.3. Systems effects -- References -- 4. Attenuation effects -- 4.1. Introduction -- 4.1.1. Scattering and absorption -- 4.1.2. Power law relationship -- 4.1.2.1. Effect of drop shapes -- 4.1.2.2. Effect of drop size distribution -- 4.1.2.3. Effect of temperature -- 4.1.3. Multiple scattering effects -- 4.1.4. Sky noise temperature -- 4.2. Measurement techniques -- 4.2.1. Rain gauge measurements -- 4.2.1.1. Spatial errors -- 4.2.1.2. Integration errors -- 4.2.1.3. Inherent errors -- 4.2.2. Radiometer measurements -- 4.2.2.1. Active radiometer measurements -- 4.2.2.2. Passive radiometer measurements -- 4.2.2.3. Potential errors in passive radiometer measurements -- 4.2.3. Satellite beacon measurements -- 4.2.3.1. Potential errors in satellite beacon measurements -- 4.2.4. Radar measurements -- 4.2.4.1. radar equation -- 4.2.4.2. Reflectivity factor -- 4.2.4.3. Differential reflectivity -- 4.2.4.4. Types of radar -- 4.2.4.5. CDR dual-polarized radar -- 4.2.4.6. LDR dual-polarized radar -- 4.2.4.7. ZDR dual-polarized radar -- 4.3. Experimental results -- 4.3.1. Radiometer experiments -- 4.3.2. Radar experiments -- 4.3.3. Satellite beacon experiments -- 4.4. Variability of path attenuation in space and time -- 4.4.1. Cumulative statistics -- 4.4.1.1. Interference aspects -- 4.4.1.2. Seasonal variations -- 4.4.1.3. Diurnal variations -- 4.4.2. Worst month -- 4.4.2.1. Return period -- 4.4.3. Short-term characteristics -- 4.4.3.1. Fade duration -- 4.4.3.2. Interval between successive fades -- 4.4.3.3. Rate of change of attenuation -- 4.4.4. Site-to-site variability -- 4.4.4.1. Azimuthal variations -- 4.4.4.2. Spatial variations -- 4.4.4.3. Site diversity -- 4.5. Correlation of attenuation data -- 4.5.1. Long-term scaling -- 4.5.1.1. Variable attenuation ratio -- 4.5.2. Short-term frequency scaling -- 4.5.3. Correlation between experimental techniques -- 4.5.4. Differential effects -- 4.5.4.1. Ranging errors -- 4.5.4.2. Dispersion effects -- 4.6. Rain attenuation prediction models -- 4.6.1. Single-site prediction models -- 4.6.2. Effective rain height -- 4.6.2.1. Virga -- 4.6.2.2. Stratiform rain -- 4.6.2.3. Thunderstorm rain -- 4.6.3. Calculation of long-term statistics for non-GSO paths -- 4.6.4. Combined effects models -- 4.6.5. ITU-R procedure for combining more than one path impairment -- 4.6.6. Site diversity prediction models -- 4.6.6.1. Prediction of site diversity gain -- 4.6.6.2. Prediction of site diversity advantage or improvement -- 4.7. System impact -- 4.7.1. Uplink fade margin -- 4.7.2. Downlink degradation -- 4.7.3. Service quality -- References -- 5. Depolarization effects -- 5.1. Introduction -- 5.2. Basic hydrometeor depolarization considerations -- 5.2.1. Medium anisotropy: differential effects -- 5.2.2. Tilting and canting angles -- 5.2.2.1. Tilt angle -- 5.2.2.2. Canting angle -- 5.2.3. Cross-polarization discrimination and cross-polarization isolation -- 5.3. Measurement techniques -- 5.3.1. Basic theory -- 5.3.2. Direct measurements -- 5.3.3. Indirect measurements -- 5.4. Experimental results -- 5.4.1. Identifying the problem -- 5.4.2. Early slant-path results -- 5.4.3. Variability of path depolarization in space and time -- 5.4.3.1. Ice crystal depolarization: statistical significance -- 5.4.3.2. Canting angles -- 5.4.3.3. Differential phase and amplitude descriptors -- 5.4.3.4. Seasonal characteristics -- 5.4.3.5. Diurnal characteristics -- 5.4.4. Worst month -- 5.4.5. Short-term characteristics -- 5.4.5.1. Duration of depolarizing events -- 5.4.5.2. Interval between successive depolarizing events -- 5.4.5.3. Rate of change of depolarization -- 5.4.6. Site-to-site variability -- 5.4.6.1. Azimuth variations -- 5.4.6.2. Spatial variations -- 5.5. Correlation ofXPDdata -- 5.5.1. Long-term frequency scaling -- 5.5.2. Short-term frequency scaling -- 5.5.3. Correlation of attenuation and depolarization -- 5.6. Depolarization prediction models -- 5.6.1. Rain depolarization models -- 5.6.2. Ice depolarization models -- 5.6.2.1. Correlating parameter -- 5.6.2.2. Isolation of parameters -- 5.6.3. General ITU-R depolarization model -- 5.6.4. Long-term frequency and polarization scaling of statistics of hydrometeor-induced XPD -- 5.6.5. Joint attenuation versus XPD prediction models -- 5.7. System impact -- 5.7.1. Co-channel interference -- 5.7.2. Scintillation/Depolarization impact -- 5.7.2.1. Tropospheric scintillation: impact on depolarization -- 5.7.2.2. Ionospheric scintillation: impact on depolarization -- References -- 6. Mobile satellite service propagation effects -- 6.1. Introduction -- 6.2. Range of propagation parameters -- 6.3. Satellite mobile communications services -- 6.3.1. Maritime mobile satellite services -- 6.3.2. Aeronautical mobile satellite services -- 6.3.3. Land mobile satellite services -- 6.4. Impairment sources -- 6.5. Propagation effects and prediction models for mobile satellite services -- 6.5.1. Maritime mobile communications -- 6.5.1.1. effect of the sea state -- 6.5.1.2. effect of frequency -- 6.5.1.3. effect of polarization -- 6.5.1.4. effect of antenna gain -- 6.5.1.5. Prediction procedure for calculating fade depth due to sea surface reflections -- 6.5.1.6. Variability of frequency spectrum -- 6.5.1.7. Variability in space and time of mobile multipath effects -- 6.5.1.8. Sea state statistics -- 6.5.1.9. Fade duration prediction -- 6.5.1.10. System effects -- 6.5.2. Aeronautical mobile communications -- 6.5.2.1. effect of antenna height -- 6.5.2.2. effect of speed -- 6.5.3. Land mobile communications -- 6.5.3.1. Effect of tree shadowing -- 6.5.3.2. Effect of building blockage -- 6.5.3.3. Effect of multipath -- 6.5.3.4. Combined effects: shadowing, blockage and multipath -- 6.5.3.5. Effects of head absorption -- 6.6. Attenuation due to vegetation -- References.
- Note continued: 7. Optical communications propagation effects -- 7.1. Introduction -- 7.2. Optical link characteristics and their differences from the microwave region -- 7.2.1. Coherence aspects -- 7.2.2. Fresnel zone aspects -- 7.2.3. Aperture-averaging aspects -- 7.2.4. Scattering aspects -- 7.2.5. Space-to-Earth and Earth-to-space asymmetry aspects -- 7.2.6. Antenna tracking aspects -- 7.2.6.1. Far-field aspects -- 7.2.6.2. Tracking aspects -- 7.2.7. Diffraction limited optics -- 7.3. Atmospheric absorption at optical frequencies -- 7.4. Weather models -- 7.4.1. Refractive effects and beam bending -- 7.4.2. Isoplanatic angle -- 7.4.3. Temporal effects of atmospheric turbulence -- 7.5. Optical propagation path prediction methods -- 7.5.1. Absorption losses -- 7.5.2. Scattering losses -- 7.5.3. Amplitude scintillation -- 7.5.4. Angle of arrival and beam wander -- 7.6. Other particulate effects -- 7.6.1. range of particles -- 7.6.2. Sand and dust effects -- 7.6.2.1. Variability in space and time of dust storms -- 7.6.2.2. Propagation impairment prediction models for dust effects -- 7.6.2.3. System impact of dust effects -- References -- 8. Restoration of performance during signal impairments -- 8.1. Introduction -- 8.2. Ionospheric propagation effects -- 8.2.1. Meliorating the effects of ionospheric amplitude scintillation -- 8.2.1.1. FEC coding with interleaving -- 8.2.1.2. FEC coding with concatenated outer code -- 8.2.1.3. FM transmissions -- 8.2.2. Faraday rotation amelioration -- 8.3. Tropospheric scintillation effects -- 8.3.1. Tropospheric scintillation: ameliorating the turbulent refractive effects -- 8.3.2. Low angle fading: ameliorating the atmospheric multipath effects -- 8.3.3. Atmospheric tidal effects: ameliorating the change in atmospheric loss -- 8.3.4. Weather maps -- 8.4. Maritime multipath effects -- 8.4.1. Frequency diversity -- 8.4.2. Height/space diversity -- 8.4.3. Polarization-shaping antennas -- 8.4.4. Beam-shaping antennas -- 8.5. Rain-attenuation effects -- 8.5.1. Fixed resource allocation to counteract signal attenuation -- 8.5.1.1. Constant margin increase -- 8.5.1.2. Constant FEC code -- 8.5.2. Dynamic resource allocation to counteract signal attenuation -- 8.5.2.1. Earth-based allocation -- 8.5.2.2. Satellite-based allocation -- 8.5.2.3. Onboard processing -- 8.5.3. Detecting the impairment -- 8.5.4. Combining signal restoration (fade mitigation) techniques -- 8.6. Depolarization effects -- 8.6.1. Techniques below 10 GHz -- 8.6.2. Techniques above 10 GHz -- 8.7. Interference -- 8.7.1. General representation -- 8.7.2. Sidelobe interference -- 8.7.2.1. Direct interference -- 8.7.2.2. Differential path interference -- 8.7.2.3. Rain-scatter coupling -- 8.7.3. Main lobe (main-beam) interference -- 8.7.3.1. Spread-spectrum coding -- 8.7.3.2. Frequency addressable antennas -- 8.8. Procedures for automated analysis -- References -- Appendix 1 Terms and definitions relating to space radiocommunications -- Appendix 2 Useful general equations -- A2.1. Equations that appear in the text or are referred to in the text -- A2.2. Calculation of the elevation and azimuth angles of an earth station operating to a geostationary satellite -- A2.3. Some useful constants -- Reference -- Appendix 3 Glossary of terms and acronyms -- Appendix 4 ITU-R propagation series recommendations.
- ISBN
- 9781849191500
- 1849191506
- 9781849191180 (canceled/invalid)
- 1849191182 (canceled/invalid)
- LCCN
- 2015451197
- OCLC
- ocn723938709
- 723938709
- SCSB-9303660
- Owning Institutions
- Princeton University Library