Research Catalog
Fracture mechanics
- Title
- Fracture mechanics / Alan T. Zehnder.
- Author
- Zehnder, Alan T.
- Publication
- London ; New York : Springer Science+Business Media, 2012.
Items in the Library & Off-site
Filter by
1 Item
Status | Format | Access | Call Number | Item Location |
---|---|---|---|---|
Not available - Please for assistance. | Text | Use in library | TA409 .Z44 2012 | Off-site |
Details
- Description
- xiv, 223 pages : illustrations (some color); 24 cm.
- Series Statement
- Lecture notes in applied and computational mechanics, 1613-7736 ; 62
- Uniform Title
- Lecture notes in applied and computational mechanics ; 62.
- Subject
- Bibliography (note)
- Includes bibliographical references and index.
- Contents
- 1.Introduction -- 1.1.Notable Fractures -- 1.2.Basic Fracture Mechanics Concepts -- 1.2.1.Small Scale Yielding Model -- 1.2.2.Fracture Criteria -- 1.3.Fracture Unit Conversions -- 1.4.Exercises -- References -- 2.Linear Elastic Stress Analysis of 2D Cracks -- 2.1.Notation -- 2.2.Introduction -- 2.3.Modes of Fracture -- 2.4.Mode III Field -- 2.4.1.Asymptotic Mode III Field -- 2.4.2.Full Field for Finite Crack in an Infinite Body -- 2.5.Mode I and Mode II Fields -- 2.5.1.Review of Plane Stress and Plane Strain Field Equations -- 2.5.2.Asymptotic Mode I Field -- 2.5.3.Asymptotic Mode II Field -- 2.6.Complex Variables Method for Mode I and Mode II Cracks -- 2.6.1.Westergaard Approach for Mode-I -- 2.6.2.Westergaard Approach for Mode-II -- 2.6.3.General Solution for Internal Crack with Applied Tractions -- 2.6.4.Full Stress Field for Mode-I Crack in an Infinite Plate -- 2.6.5.Stress Intensity Factor Under Remote Shear Loading -- 2.6.6.Stress Intensity Factors for Cracks Loaded with Tractions -- 2.6.7.Asymptotic Mode I Field Derived from Full Field Solution -- 2.6.8.Asymptotic Mode II Field Derived from Full Field Solution -- 2.6.9.Stress Intensity Factors for Semi-infinite Crack -- 2.7.Some Comments -- 2.7.1.Three-Dimensional Cracks -- 2.8.Exercises -- References -- 3.Energy Flows in Elastic Fracture -- 3.1.Generalized Force and Displacement -- 3.1.1.Prescribed Loads -- 3.1.2.Prescribed Displacements -- 3.2.Elastic Strain Energy -- 3.3.Energy Release Rate, G -- 3.3.1.Prescribed Displacement -- 3.3.2.Prescribed Loads -- 3.3.3.General Loading -- 3.4.Interpretation of G from Load-Displacement Records -- 3.4.1.Multiple Specimen Method for Nonlinear Materials -- 3.4.2.Compliance Method for Linearly Elastic Materials -- 3.4.3.Applications of the Compliance Method -- 3.5.Crack Closure Integral for G -- 3.6.G in Terms of KI, KII, KIII for 2D Cracks That Grow Straight Ahead -- 3.6.1.Mode-III Loading -- 3.6.2.Mode I Loading -- 3.6.3.Mode II Loading -- 3.6.4.General Loading (2D Crack) -- 3.7.Contour Integral for G (J-Integral) -- 3.7.1.Two Dimensional Problems -- 3.7.2.Three-Dimensional Problems -- 3.7.3.Example Application of J-Integral -- 3.8.Exercises -- References -- 4.Criteria for Elastic Fracture -- 4.1.Introduction -- 4.2.Initiation Under Mode-I Loading -- 4.3.Crack Growth Stability and Resistance Curve -- 4.3.1.Loading by Compliant System -- 4.3.2.Resistance Curve -- 4.4.Mixed-Mode Fracture Initiation and Growth -- 4.4.1.Maximum Hoop Stress Theory -- 4.4.2.Maximum Energy Release Rate Criterion -- 4.4.3.Crack Path Stability Under Pure Mode-I Loading -- 4.4.4.Second Order Theory for Crack Kinking and Turning -- 4.5.Criteria for Fracture in Anisotropic Materials -- 4.6.Crack Growth Under Fatigue Loading -- 4.7.Stress Corrosion Cracking -- 4.8.Exercises -- References -- 5.Determining K and G -- 5.1.Analytical Methods -- 5.1.1.Elasticity Theory -- 5.1.2.Energy and Compliance Methods -- 5.2.Stress Intensity Handbooks and Software -- 5.3.Boundary Collocation -- 5.4.Computational Methods: A Primer -- 5.4.1.Stress and Displacement Correlation -- 5.4.2.Global Energy and Compliance -- 5.4.3.Crack Closure Integrals -- 5.4.4.Domain Integral -- 5.4.5.Crack Tip Singular Elements -- 5.4.6.Example Calculations -- 5.5.Experimental Methods -- 5.5.1.Strain Gauge Method -- 5.5.2.Photoelasticity -- 5.5.3.Digital Image Correlation -- 5.5.4.Thermoelastic Method -- 5.6.Exercises -- References -- 6.Fracture Toughness Tests -- 6.1.Introduction -- 6.2.ASTM Standard Fracture Test -- 6.2.1.Test Samples -- 6.2.2.Equipment -- 6.2.3.Test Procedure and Data Reduction -- 6.3.Interlaminar Fracture Toughness Tests -- 6.3.1.The Double Cantilever Beam Test -- 6.3.2.The End Notch Flexure Test -- 6.3.3.Single Leg Bending Test -- 6.4.Indentation Method -- 6.5.Chevron-Notch Method -- 6.5.1.KIVM Measurement -- 6.5.2.KIV Measurement -- 6.5.3.Work of Fracture Approach -- 6.6.Wedge Splitting Method -- 6.7.K -- R Curve Determination -- 6.7.1.Specimens -- 6.7.2.Equipment -- 6.7.3.Test Procedure and Data Reduction -- 6.7.4.Sample K -- R curve -- 6.8.Exercises -- References -- 7.Elastic Plastic Fracture: Crack Tip Fields -- 7.1.Introduction -- 7.2.Strip Yield (Dugdale) Model -- 7.2.1.Effective Crack Length Model -- 7.3.A Model for Small Scale Yielding -- 7.4.Introduction to Plasticity Theory -- 7.5.Anti-plane Shear Cracks in Elastic-Plastic Materials in SSY -- 7.5.1.Stationary Crack in Elastic-Perfectly Plastic Material -- 7.5.2.Stationary Crack in Power-Law Hardening Material -- 7.5.3.Steady State Growth in Elastic-Perfectly Plastic Material -- 7.5.4.Transient Crack Growth in Elastic-Perfectly Plastic Material -- 7.6.Mode-I Crack in Elastic-Plastic Materials -- 7.6.1.Stationary Crack in a Power Law Hardening Material -- 7.6.2.Slip Line Solutions for Rigid Plastic Material -- 7.6.3.Large Scale Yielding (LSY) Example -- 7.6.4.SSY Plastic Zone Size and Shape -- 7.6.5.CTOD-J Relationship -- 7.6.6.Growing Mode-I Crack -- 7.6.7.Three Dimensional Aspects -- 7.6.8.Effect of Finite Crack Tip Deformation on Stress Field -- 7.7.Exercises -- References -- 8.Elastic Plastic Fracture: Energy and Applications -- 8.1.Energy Flows -- 8.1.1.When Does G = J? -- 8.1.2.General Treatment of Crack Tip Contour Integrals -- 8.1.3.Crack Tip Energy Flux Integral -- 8.2.Fracture Toughness Testing for Elastic-Plastic Materials -- 8.2.1.Samples and Equipment -- 8.2.2.Procedure and Data Reduction -- 8.2.3.Examples of J -- R Data -- 8.3.Calculating J and Other Ductile Fracture Parameters -- 8.3.1.Computational Methods -- 8.3.2.J Result Used in ASTM Standard JIC Test -- 8.3.3.Engineering Approach to Elastic-Plastic Fracture Analysis -- 8.4.Fracture Criteria and Prediction -- 8.4.1.J Controlled Crack Growth and Stability -- 8.4.2.J -- Q Theory -- 8.4.3.Crack Tip Opening Displacement, Crack Tip Opening Angle -- 8.4.4.Cohesive Zone Model -- References.
- ISBN
- 9789400725942
- 9400725949
- 9789400725959
- 9400725957
- LCCN
- 2011944214
- OCLC
- ocn755698387
- 755698387
- SCSB-9174668
- Owning Institutions
- Princeton University Library