Research Catalog

Oxide ultrathin films : science and technology

Title
Oxide ultrathin films : science and technology / edited by Gianfranco Pacchioni and Sergio Valeri.
Publication
Weinheim, Germany : Wiley-VCH, ©2012.

Items in the Library & Off-site

Filter by

1 Item

StatusFormatAccessCall NumberItem Location
TextUse in library TA418.9.T45 .O953 2012Off-site

Details

Additional Authors
  • Pacchioni, G. (Gianfranco), 1954-
  • Valeri, Sergio.
Description
xvi, 352 pages : illustrations (some color); 25 cm
Summary
"A wealth of information in one accessible book. Written by international experts from multidisciplinary fields, this in-depth exploration of oxide ultrathin films covers all aspects of these systems, starting with preparation and characterization, and going on to geometrical and electronic structure, as well as applications in current and future systems and devices."--Page 4 of cover.
Subject
  • Thin films
  • Oxides
  • Oxides
  • Thin films
  • Dünne Schicht
  • Metalloxide
Bibliography (note)
  • Includes bibliographical references and index.
Contents
  • Machine generated contents note: 1. Synthesis and Preparation of Oxide Ultrathin Films / Stefania Benedetti -- 1.1. Introduction -- 1.2. Basic Aspects of Fabrication -- 1.3. Physical Methods -- 1.3.1. Controlled Oxidation of Bulk Single-Crystal Surfaces -- 1.3.2. Sputtering and Ablation of Oxide Targets -- 1.3.2.1. Sputter Deposition -- 1.3.2.2. Pulsed Laser Deposition -- 1.3.3. Reactive Physical Vapor Deposition -- 1.3.3.1. Film Growth by Sputtering or Ablation of Pure Targets in Oxidizing Atmosphere -- 1.3.3.2. Film Growth by Reactive MBE -- 1.3.4. Post-oxidation of Pre-deposited Thin Metal Films -- 1.4. Chemical Methods -- 1.4.1. Chemical Vapor Deposition -- 1.4.2. Liquid-Precursor-Based Thin-Film Deposition Techniques -- 1.5. Oxide Nanosheets and Buried Layers -- 1.5.1. Exfoliated and Detachable Layers -- 1.5.1.1. Exfoliated Oxide Nanosheets -- 1.5.1.2. Detachable Ultrathin Oxide Films -- 1.5.2. Buried Oxide Layers -- 1.6. Conclusions and Perspectives -- 2. Characterization Tools of Ultrathin Oxide Films / Geoff Thornton -- 2.1. Introduction -- 2.2. Structure Determination Techniques -- 2.2.1. Scanned Probe Microscopy -- 2.2.2. Scanning Tunneling Microscopy -- 2.2.2.1. Case Study: Ce02(111)/Pt(111) -- 2.2.3. Noncontact Atomic Force Microscopy -- 2.2.4. X-Ray Photoemission Electron Microscopy -- 2.2.4.1. Case Study: Iron Oxide on α-Al2O3(0001) -- 2.2.5. Surface X-Ray Diffraction -- 2.2.5.1. Case Study: Oxidation of Rh(111) -- 2.2.6. Photoelectron Diffraction -- 2.2.6.1. Case Study: VO Layers on TiO2(110) -- 2.3. Spectroscopic Techniques -- 2.3.1. X-Ray Magnetic Circular/Linear Dichroism -- 2.3.1.1. Case Study: Fe3--δO4(111) Ultrathin Films on Pt(111) -- 2.3.1.2. Case Study: NiO/FeO(001) -- 2.3.2. Magneto-optical Kerr Effect -- 2.3.2.1. Case Study: Fe/NiO/MgO(001) and Fe/NiO/Ag(001) -- 2.3.3. Conversion Electron Mossbauer Spectroscopy -- 2.3.3.1. Case Study: Fe304(111)/Pt(111) -- 2.4. Summary -- 3. Ordered Oxide Nanostructures on Metal Surfaces / Svetlozar Surnev -- 3.1. Introduction -- 3.2. Fabrication of Oxide Nanostructures -- 3.3. Novel Structure Concepts -- 3.4. Dimensionality Aspects: from Two- to One- to Zero-Dimensional Structures -- 3.5. Transition from Two- to Three-Dimensional Structures: Growth of Bulk Structures out of Interfacial Layers -- 3.6. Synopsis -- Acknowledgment -- 4. Unusual Properties of Oxides and Other Insulators in the Ultrathin Limit / Cianfranco Pacchioni -- 4.1. Introduction -- 4.2. Evolution of Band Gap with Film Thickness -- 4.3. Electronic Transport through Oxide Ultrathin Films -- 4.4. Work Function Changes Induced by Oxide Films -- 4.5. Nanoporosity: Oxide Films as Molecular and Atomic Sieves -- 4.6. Flexibility of Oxide Thin Films and Polaronic Distortion -- 4.7. Conclusions -- Acknowledgments -- 5. Silica and High-fc Dielectric Thin Films in Microelectronics / Alexander Shluger -- 5.1. Introduction -- 5.2. Electrical Characterization of High-fc Dielectrics on Silicon -- 5.3. Theoretical Modeling of Gate Dielectric Films -- 5.3.1. Aims of Theoretical Modeling -- 5.3.2. Computational Methods -- 5.4. Models of the Structure and Properties of HfO2 Gate Dielectric Films -- 5.4.1. Oxygen-Deficient Defect Centers in Bulk HfO2 -- 5.4.2. Self-Trapped Polarons in HfO2 -- 5.4.3. Using Doping to Increase the k Value in HfO2 -- 5.4.4. Modeling of Si/SiO2/HfO2 Films and Interfaces -- 5.5. Polycrystalline Gate Oxide Films -- 5.5.1. Impact of Polycrystallinity on Microelectronic Device Characteristics -- 5.5.2. Structure and Electronic Properties of Grain Boundaries -- 5.5.3. Defect Segregation at Grain Boundaries -- 5.6. Conclusions and Outlook -- Acknowledgments -- 6. Oxide Passive Films and Corrosion Protection / Vincent Maurice -- 6.1. Introduction -- 6.2. Electrochemical Fundamentals of Passivation of Metals -- 6.3. Chemical Composition, Chemical States, and Thickness of Passive Films on Metals and Alloys -- 6.3.1. Copper, silver, nickel, iron, and chromium -- 6.3.2. Stainless Steels -- 6.4. Two-Dimensional Oxide Passive Films on Metals -- 6.4.1. Copper -- 6.4.2. Silver -- 6.5. Growth and Nanostructure of Three-Dimensional Ultrathin Oxide Films -- 6.5.1. Cu(I) and Cu(I)/Cu(II) Passive Films -- 6.5.2. Ni(II) Passive Films -- 6.5.3. Fe(II)/Fe(III) Passive Films -- 6.5.4. Aging Effects on Cr(III)-Rich Passive Films -- 6.6. Corrosion Modeling by DFT -- 6.7. Conclusion -- 7. Oxide Films as Catalytic Materials and Models of Real Catalysts / Hans-Joachim Freund -- 7.1. Introduction -- 7.2. Oxide Thin Films Grown as Supports -- 7.3. Systems to Model Real Catalysts -- 7.3.1. Supported Gold -- 7.3.2. Oxides on Oxides: Vanadia Nanoparticles on Ceria -- 7.4. Ultrathin-Film Catalysts -- 7.5. Synopsis -- Acknowledgments -- 8. Oxide Films in Spintronics / Franco Ciccacci -- 8.1. Introduction -- 8.2. Historical Notes -- 8.3. Half-Metallic Manganites: the Case of LSMO -- 8.4. Electric Control of Magnetization in Oxide Heterostructures -- 8.4.1. Proximity and Electric Field Effects on Magnetic Properties of LSMO Films -- 8.4.2. Magnetoelectric Coupling at Fe-BTO Interfaces -- 8.5. Conclusions and Perspectives -- Acknowledgments -- 9. Oxide Ultrathin Films for Solid Oxide Fuel Cells / Tatsumi Ishihara -- 9.1. Overview of Solid Oxide Fuel Cell Technology -- 9.2. Preparation of Oxide Ion Conductor Thin Films -- 9.3. Nano Size Effects on Oxide Ion Conductor Films -- 9.4. Power Generating Property of SOFCs using LaGa03 Thin Films -- 9.5. Development of μ-SOFCs -- 9.6. Concluding Remarks -- 10. Transparent Conducting and Chromogenic Oxide Films as Solar Energy Materials / Claes-Coran Granqvist -- 10.1. Introduction -- 10.2. Transparent Infrared Reflectors and Transparent Electrical Conductors -- 10.2.1. Overview -- 10.2.2. Computed Optical Data for ITO Films -- 10.2.3. Alternative Transparent Conductors -- 10.3. Thermochromics -- 10.3.1. Overview -- 10.3.2. VO2 Films and Nanoparticles: How to Improve the Modulation ofTsol -- 10.3.3. Magnesium Doping of VO2: How to Enhance Tlum -- 10.4. Electrochromics -- 10.4.1. Overview -- 10.4.2. Nanostructural Features: A Closer Look at EC Films -- 10.4.3. EC Foils by Roll-to-Roll Manufacturing: Some Initial Results -- 10.5. Summary and Concluding Remarks -- 11. Oxide Ultrathin Films in Sensor Applications / Anton Kock -- 11.1. Introduction -- 11.2. Sensor Applications -- 11.2.1. Magnetic Sensors -- 11.2.2. Photodetectors and Detectors for the (F)IR Region -- 11.2.3. Electrochemical Sensors -- 11.2.4. Gas Sensors -- 11.2.4.1. Optical Gas Sensors -- 11.2.4.2. Mass-Sensitive Gas Sensors -- 11.2.4.3. Electrical Gas Sensors -- 11.3. SnO2-Based Gas Sensors -- 11.3.1. Sensor Fabrication -- 11.3.2. Sensor Performance -- 11.4. Conclusion -- 12. Ferroelectricity in Ultrathin-Film Capacitors / Javier Junquera -- 12.1. Introduction -- 12.2. Ferroelectricity: Basic Definitions -- 12.3. Theoretical Methods for the Study of Bulk Ferroelectric Materials -- 12.3.1. Devonshire-Ginzburg-Landau Phenomenological Theory -- 12.3.2. First-Principles Simulations -- 12.3.3. Second-Principles Methods: Model Hamiltonians and Shell Models -- 12.4. Modeling Ferroelectricity in Oxides -- 12.5. Theory of Ferroelectric Thin Films -- 12.5.1. Mechanical Boundary Conditions: Strain -- 12.5.2. Electrical Boundary Conditions: Imperfect Screening -- 12.5.3. Electrical Functionals with a Depolarization Field -- 12.5.4. Chemical Bonding Contributions to Electrical Boundary Conditions -- 12.6. Polarization Domains and Domain Walls -- 12.6.1. KittelLaw -- 12.6.2. Domain Morphology -- 12.6.3. Domain Walls -- 12.7. Artificially Layered Ferroelectrics -- 12.7.1. Electrostatic Coupling -- 12.7.2. Engineering Ferroelectricity at Interfaces -- 12.8. Conclusion and Perspectives -- 13. Titania Thin Films in Biocompatible Matals and Medical Implants / Antonio Nanci -- 13.1. The Advent of Titanium-Based Materials -- 13.2. Biologically Relevant Physicochemical Properties of Native Titania Thin Films -- 13.3. Strategies for Modification of the Surface Oxide Layer -- 13.3.1. Chemical Methods -- 13.3.1.1. Oxide Growth Models for Oxidative Treatments -- 13.3.1.2. Doping of Oxide Layers with Bioactive Elements -- 13.3.2. Physical Methods -- 13.3.3. Biochemical Functionalization -- 13.4. Biological Surface Science -- 13.5. Biological Response to Surface Oxide Layers -- 13.5.1. Protein Adsorption -- 13.5.2. In Vitro Studies -- 13.5.3. In Vivo and Clinical Studies -- 13.5.4. Antibacterial Capacity -- 13.6. Slow Release Capacity of Nanoporous Titanium Oxide Layers -- 13.7. Conclusion and Perspectives -- Acknowledgments -- 14. Oxide Nanowires for New Chemical Sensor Devices / Giorgio Sberveglieri -- 14.1. Outline -- 14.2. Introduction -- 14.3. Synthesis -- 14.4. Integration -- 14.5. Metal Oxide Chemical Sensors -- 14.6. Conductometric Sensors -- 14.7. Optical Sensors.
  • Synthesis and Preparation of Oxide Ultrathin Films / Sergio Valeri, Stefania Benedetti -- Characterization Tools of Ultrathin Oxide Films / David C Grinter, Geoff Thornton -- Ordered Oxide Nanostructures on Metal Surfaces / Falko P Netzer, Svetlozar Surnev -- Unusual Properties of Oxides and Other Insulators in the Ultrathin Limit / Livia Giordano, Gianfranco Pacchioni -- Silica and High-k Dielectric Thin Films in Microelectronics / Gennadi Bersuker, Keith McKenna, Alexander Shluger -- Oxide Passive Films and Corrosion Protection / Philippe Marcus, Vincent Maurice -- Oxide Films as Catalytic Materials and Models of Real Catalysts / Hans-Joachim Freund -- Oxide Films in Spintronics / Riccardo Bertacco, Franco Ciccacci -- Oxide Ultrathin Films for Solid Oxide Fuel Cells / Tatsumi Ishihara -- Transparent Conducting and Chromogenic Oxide Films as Solar Energy Materials / Claes-Göran Granqvist -- Oxide Ultrathin Films in Sensor Applications / Elise Brunet, Giorgio C Mutinati, Stephan Steinhauer, Anton Köck -- Ferroelectricity in Ultrathin-Film Capacitors / Celine Lichtensteiger, Pavlo Zubko, Massimiliano Stengel, Pablo Aguado-Puente, Jean-Marc Triscone, Philippe Ghosez, Javier Junquera -- Titania Thin Films in Biocompatible Matals [i.e. Metals] and Medical Implants / Fabio Variola, Antonio Nanci -- Oxide Nanowires for New Chemical Sensor Devices / Alberto Vomiero, Elisabetta Comini, Giorgio Sberveglieri.
ISBN
  • 9783527330164
  • 352733016X
  • 3527640177
  • 9783527640171
  • 3527640185
  • 9783527640188
  • 3527640193
  • 9783527640195
  • 3527640207
  • 9783527640201
  • 9783527640195 (canceled/invalid)
  • 9783527640171 (canceled/invalid)
  • 9783527640188 (canceled/invalid)
  • 9783527640201 (canceled/invalid)
LCCN
  • 2012554542
  • 9783527330164
OCLC
  • ocn768068334
  • 768068334
  • SCSB-9183332
Owning Institutions
Princeton University Library